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                                        CHAPTER 1: INTRODUCTION    

 Over the years, the manufacturing sector has contributed significantly to improve the 

quality of life amidst growing human population and increasing demands for better quality 

product. On the other hand, there are negative consequences that are associated with the 

manufacturing activities including declining natural resources, large energy consumption, 

harmful emissions, and disposals of used product in landfills. According to the International 

Energy Agency (IEA), the manufacturing sector accounts for 42% of electricity (figure 1.1a), 37.7% 

of natural gas (figure 1.1b), 39.8% of coal, and 8% of oil in global energy consumption, with an 

equivalent 28% of total global 𝐶𝑂2 release (figure 1.1c) IEA (2017).    

 

(a)                                                             (b)                                                  (c) 

Figure 1.1: Proportion of energy consumption and 𝐶𝑂2 release by manufacturing sector 

In order to curtail the negative impacts of the manufacturing activities, governments 

around the globe are implementing regulations that hold the original equipment manufacturers 

(OEMs) accountable for the post-consumer phase of their products. Consequently, some product 

end-of-life (EOL) management strategies have emerged, among which remanufacturing is 

considered the most viable (Ma & Kremer, 2014). According to the US International Trades 
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Commission, remanufacturing is recording increasing remarkable strides with the value of 

remanufactured products rising from $37.3 billion in 2009 to $43 billion by 2011 in the US alone 

(Commission, 2012). Similarly, remanufacturing prevents the emission of over 28 million tons of 

CO2 annually (Charter & Gray, 2008).  In recognizing the embedded benefits in remanufacturing, 

the US 114th Congress passed the “Federal Vehicle Repair cost saving acts of 2015” Congress 

(2015). The sections 3 and 4 of the act specifically advocate increased remanufacturing. 

Furthermore, international collaboration towards effective remanufacturing was discussed at the 

2005 G7 Summit, while the United Nations through its International Resources Panel (IRP) 

formed a group with global remanufacturing cooperation as the primary focus (Matsumoto et 

al., 2016). However, as shown in table 1.1, about 80% of manufactured products are currently 

disposed at their EOL despite the EOL management techniques (Commission, 2012).  

Table 1.1: Global Product End-of-life disposal  
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Major impediments to remanufacturing include the quality, quantity, recovery time of 

the used product, and the negative perception of the remanufactured product (Hatcher et al., 

2011). Therefore, it is worthwhile to undertake studies to enhance remanufacturing activities in 

order to harness the considerable gains that are contained therein. Meanwhile, the product 

service system (PSS) is a business strategy that is predicated on the selling of products’ functions 

rather than the physical product, while the manufacturer retains the product ownership 

(Annarelli et al., 2016). Due to product sharing philosophy of PSS, fewer products are required to 

meet the customers’ needs, thereby reducing the usage of materials, energy, machinery, 

equipment, and associated emissions. As a result, PSS is considered a sustainable product 

offering. An increasing number of OEMs are currently offering their products in PSS (Song & 

Sakao, 2017).  In the same vein, Google trend (https://trends.google.com/trends) shows a 

gradually increasing interest in PSS since 2012, as depicted in figure 1.2. (Trend captured on 

February 5, 2018). 

                      

Figure 1.2: Trend in Product service system 

With the OEM retaining the product’s ownership, the quantity, volume and recovery time 

of used product can be controlled to a large extent. Similarly, the acceptability of a 

remanufactured product is substantially heightened because in PSS, only the product’s functions 
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are required by the customers. Therefore, the PSS is poised to address the major setbacks of 

remanufacturing. Consequently, the integration of PSS and remanufacturing as a business 

enterprise enables the OEM to realize the benefits of PSS and remanufacturing, and translating 

the remanufacturing hitches into gains simultaneously. The PSS-remanufacturing initiative is 

conceived as a sustainable product offering.       

 The PSS-remanufacturing business idea is currently emerging. Theoretical framework 

linking PSS and remanufacturing has been provided (Sundin and Lindahl, 2008). However, 

analytical approach in this regard is missing. Similarly, the associated lifecycle variables (e.g. cost) 

with regard to PSS-remanufacturing business is missing.  It is widely reported that product 

lifecycle is mainly influenced by decisions that are made in the early phase of product 

development (PD) decisions. Kremer report that about 80% lifecycle. The report that issues no 

longer rectifiable after the market. Further, modular design is considered as an efficient PD 

strategy. Our contribution towards the improvement of the PSS-remanufacturing business 

offering is discussed in three chapters. In general, we develop a unique optimization model that 

determines the modular product architecture in order to realize an improved PSS-

Remanufacturing business. The description framework is shown in figure 1.3.  

 In chapter 2, the fuzzy system was engaged to quantify the imprecise data that relate to 

the product’s performance in order to develop a unique optimization model based on pairwise 

comparison of modules. Currently, an individual module is considered on its merit for PD 

purpose. The study introduces modular pairwise assessment into PD. 
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     Figure 1.3: Product offering in PSS-Remanufacturing environment 

In Chapter 3, the implications of lifecycle cost are considered in the base model that was 

developed earlier in the early phase of PD. In addition, multi-attribute utility theory (MAUT) was employed 

to provide a comparative assessment of the optimal product configurations. The sustainability of a PSS-

remanufacturing business is the focus of chapter 4. The study performs lifecycle assessment of module 

variants to determine the ecological impacts of module variants and quantify the environmental 

sustainability of the modular product architectures.   Through MAUT, the degree of sustainability of 

optimal product configuration was provided. Finally, the conclusions of the study are contained in chapter 

5. It reiterates the significance of the study as a modular product architecture decision guide.  
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               CHAPTER 2: MODULAR PRODUCT MODEL DEVELOPMENT 

2.1 Introduction  

In order to address the sustainability concerns that result from increasing demand for 

higher quality products as well as population growth, significant efforts have been made with 

regard to product end-of-life (EOL) management. EOL management strategies include, recycling, 

reuse, refurbishment, remanufacturing, reconditioning, repurposing, repair, composting, 

incineration, and disposals in landfill (Ma & Okudan, 2014). Remanufacturing is widely reported 

to be the most economically and environmentally beneficial among product EOL management 

strategies (Ma & Okudan, 2014). However, despite the various EOL management strategies, 

about 80% of manufactured products currently end up as waste (Commission, 2012). Among 

other challenges, remanufacturing is influenced by uncertainty with regard to the time in which 

a used product is returned, and also by the quality and quantity of the used product that is 

returned.           

 Product service system (PSS) is a business strategy that emphasizes the functions of the 

product rather than the product itself, while the OEMs retains the ownership of the product. This 

enables the OEM to have some control over the time, quality and the volume of products that 

are returned from use.  (Meier et al., 2011). Consequently, PSS provides a remedy to some of the 

challenges of remanufacturing. Govindan et al. (2016) evaluate twenty common barriers to 

remanufacturing and conclude that low customer acceptance of remanufactured product is a 

substantial impediment. Meanwhile, PSS remedies this problem as well because customers do 

not take ownership of the product, and a remanufactured product that provides the functions 

that the customers desires is well acceptable. In a study on the level of customers’ satisfaction 
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with regard to a product that is offered in PSS, Lee et al. (2015) identify measures of customers’ 

values and provide their priority indices. The newness or otherwise of the product is not listed as 

important among the prioritized eight measures of customers’ satisfaction.   

As a result, the integration of remanufacturing and PSS is considered to be a potent 

remedy to the sustainability issues associated with manufacturing.  Some theoretical attempts 

to links remanufacturing and PSS have been reported. The work of Sundin & Lindah (2008) is the 

earliest that provides such theoretical connection. Due to the potential benefits, the need to 

conduct further studies on remanufacturing and PSS synergy was emphasized by Hatcher et al. 

(2011).  Nevertheless, analytical-based integration of remanufacturing and PSS at the early phase 

of product development is still missing.  

The aim of this study is to fill this lacuna by providing a mathematical approach to modular 

product development in order to enhance remanufacturing and PSS. PSS is characterized by 

heavy product usage, which requires higher product serviceability. Therefore, serviceability must 

be built into the product at the product development phase. Meanwhile, research has shown 

that over 70% of product life cycle costs are associated with the product design and development 

decisions (Nepal et al., 2007). By implication, the integration of both PSS and remanufacturing 

rests heavily on product development decisions. It has also been shown in the literature that 

modular architecture significantly enhances product development (Nepal et al., 2008). With 

modular architecture, complex products are decomposed into simpler units while sustaining 

product integrity (Nepal et al 2007). Among other benefits, architecture strategy enhances 

product disassembly, thus improving product serviceability and core cleaning for both PSS and 

remanufacturing. This paper considers two factors that are essential for both PSS and 
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remanufacturing: serviceability, a major criterion at product use phase, and core cleaning during 

remanufacturing at the product end-of-use (EOU) phase. These criteria are optimized, and most 

viable product configurations are obtained from among several product alternatives that are 

potentially available to the OEM. The outcomes will help product development decision makers 

to make better informed decisions regarding product modularity at the early stage of product 

development.  

2.2  Literature Review 

2.2.1 Overview of remanufacturing 

Remanufacturing refers to the process of restoring product at the end-of-life/end-of-use 

phase into products that are at least as good as the original product (Aksoy & Gupta, 2005). This 

definition is common to most of the research on remanufacturing. To make this description more 

encompassing, Ijomah et al. (2007) includes the importance of similar customers’ perception of 

both the remanufactured and new product. Remanufacturing is considered to be the most viable 

option among product EOL options (Lund & Hauser, 2003). Remanufactured products save 

landfills, prevent air pollution associated with recycling, mitigate extraction of raw materials, and 

retain other value added to the materials when the product was initially produced, such as energy 

and machinery (Gray & Charter, 2007).  

Numerous studies have focused on product remanufacturing. Remanufacturing saves 

about 85% of the energy required to manufacture a new product, the energy equivalent of about 

10.744 million barrels of crude (Giutini & Gaudette, 2003). It prevents yearly production of 

around 28 million tons of CO2 globally (Gray & Charter, 2007). Remanufacturing also avoids huge 

manufacturing costs (Lund & Hauser, 2003), creates jobs, and lowers the price of remanufactured 
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products to about 40% to 65% of a similar product when new (Commission, 2012). As a result of 

the benefits of remanufacturing, several works have studied how it could be improved, while 

identifying the factors that are required for its success. Among these factors, core cleaning is 

considered essential. While developing metrics for a generic remanufacturing process, Sundin 

(2004) reiterates the importance of core cleaning operation. Sundin et al. (2008) study the 

product properties that are essential so as to improve remanufacturing. The study develops a 

remanufacturing process matrix called RemPro, which includes cleaning operations as being 

critical for effective remanufacturing.   Gallo et al. (2012) found that in the remanufacturing 

industries, most processes have fixed sequence of activities. The study concludes that cleaning 

activities are critical to successful remanufacturing and should be made flexible. While 

developing remanufacturing decision making framework, Subramoniam et al. (2010) show that 

core recovery and cleaning strategies are essential in order to realize an enhanced 

remanufacturing.  Another study by Yagar (2012) reinforces the criticality of cleaning processes 

to successful remanufacturing. The study lists seven major cleaning operations and eight sub-

cleaning operations that are used in remanufacturing, and  concludes that parts that share similar 

processes, parts with similar material composition, and parts that attract similar dirt or 

contamination will enhance cleaning, lower the cost of remanufacturing, and improve the quality 

of the remanufactured product. However, remanufacturing is inhibited by factors such as 

unknown quality and quantity of the product’s returned core, the uncertain timeframe in which 

the core is returned, the obsolescence level of returned parts, the acceptability of 

remanufactured products by customers, and financial benefits to the OEM (Hatcher et al., 2011).  

2.2.2 Overview of the product service system 
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For optimal use of resources and improved sustainability, the product service system 

(PSS) was designed to offer more of the functions the product is meant to provide rather than 

offering the product itself (Baines et al., 2007). The earliest work on PSS by Goedkoop et al (1999) 

defines it as “a system of products, services, networks of ‘players’ and supporting infrastructure 

that continuously strives to be competitive, satisfy customer needs and have a lower 

environmental impact than traditional business model.” PSS is generally classified into three 

types: product-oriented, use-oriented, and result-oriented (Yang et al., 2009). In use-oriented 

PSS, the manufacturer owns the product, while the usage and functions of the product are 

offered to the user, usually through shared utilization services (or community products). These 

product functions are offered rather than selling the product itself. A high level of product usage 

characterizes use-oriented PSS, thereby underscoring the need to focus more on product 

serviceability during product development. Use-oriented PSS emphasizes that the product 

function provides the results that the customer requires (Song & Sakao, 2017).  

 A fundamental benefit of PSS is that it allows fewer physical products to offer the same 

or higher level of product functionality, thereby reducing the consumption of natural resources 

and energy requirements for manufacturing and associated transportation. As a result of the 

benefits of PSS, an increasing number of manufacturers now look beyond the product end-of-life 

remedy and are shifting their focus from the traditional product-selling philosophy to selling 

product functionality. Wijekoon (2011) demonstrates with mixed-integer linear programming 

that a product offered in PSS is more profitable to the enterprise and has lower environmental 

effects than a traditional product selling. Thompson et al. (2010) show that the benefits of PSS 

are higher when the product offered in PSS has a long life. More recent study on PSS highlights 
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the importance of keeping product health monitoring data and user feedbacks during product 

lifecycle in repositories (Song & Sakao, 2017).  These databanks provide valuable inputs that 

facilitate product development decisions. It is suggested that the PSS-remanufacturing approach 

will significantly remediate some of the economic and environmental issues associated with the 

product lifecycle (Hatcher et al., 2011). The environmental and economic advantages of PSS for 

both OEM and the product user are discussed in previous research.  Sundin & Bras (2005) report 

that tens of thousands of forklifts are offered in PSS in Europe, and increasing volume of these 

forklifts are returned to remanufacturing facilities, culminating in huge financial savings for BT 

industries,  and at the same time mitigating environmental impact had forklifts been sold into 

individual ownerships. Ferguson et al. (2009) find that in 2005, Caterpillar earned over $1 billion 

in sales of remanufactured product, while the product was previously leased. Robin Roy (2000) 

reports the financial savings by Xerox as a result of incorporating remanufactured parts into its 

various copiers, while the copiers are offered in PSS. Some industries that are involved in selling 

the services of their product and also engaged in remanufacturing are discussed in Roy et al. 

(2009).  However, analytical studies on PSS-remanufacturing integration are sparse in the 

literature. Hatcher et al. (2011) emphasize that more studies are required in order to effectively 

integrate both PSS and remanufacturing.                                    

2.2.3      Relevance of product modularity to product lifecycle    

 It is widely reported in the literature that product modularity plays significant roles in the 

product life cycle: the product design, development, use, and end-of-life management phases. 

Modular architecture is a concept that aims to decompose a complex product into many simpler 

units for optimal arrangement of parts (physically and functionally) and optimal user interface 
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with the product (Ma & Okudan, 2014). The importance of modular design with regard to product 

maintainability or serviceability is detailed in several studies. Nepal et al. (2007) conclude that 

the cost of product maintainability is reduced as a result of modular architecture. Sundin et al. 

(2008) note that modular design facilitates product disassembly, and consequently improves 

product serviceability. Subramoniam et al. (2009) report that 75% of retired products that return 

to remanufacturing facilities are not designed with remanufacturing in focus, and thereby leading 

to some operational hitches. The study recommends design simplification such as modular 

architecture to facilitate remanufacturing.  Chebyshev goal programming (CGP) was employed to 

develop optimal modular product that will enhance product maintainability, as well as other 

objectives in Nepal et al. (2007) The advantages of modular design for core cleaning are provided 

in (Yagar, 2012).                                        

2.2.4        Application of fuzzy system in product development    

 The attributes and performance of a product’s parts while the product is in use and during 

EOL management are uncertain. However, when such uncertainties are classified in linguistic 

terms, such as bad, fair, good, and very good, fuzzy logic has proven adept at handling such 

uncertainties by translating the linguistic terms into quantitative values that can be used for 

mathematical computation.  Intense knowledge and experience of a subject matter expert are 

usually required in other to develop the fuzzy rules. Fuzzy logic has been largely employed in 

modular product development. While considering modular product design at the early stage, (Ma 

& Okudan, 2014) apply fuzzy logic to estimate product EOL uncertainties such as parts 

accessibility and disassembly for remanufacturing. Nepal et al. (2008) apply the trapezoidal 

membership function of fuzzy logic to capture imprecise data in order to develop optimal 
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modules while considering reliability, maintainability, and cost. In the optimal product 

architecture developed for medical devices in Aguwa et al. (2010), medical stakeholders’ data 

were obtained and converted into crisp values using the Sugeno fuzzy inference engine. 

Furthermore, Aguwa et al. (2012) demonstrate the effect of fuzzy rules modification on the 

optimal number of modules for medical device architecture.    

 The fuzzy inference system (FIS) consists of four main parts: fuzzifier, if-then rules, 

inference engine, and defuzzifier.  Application of fuzzy inference system in product development 

research may be found in Büyüközkan & Feyzıog̃lu (2004), and also in  Famuyiwa et al. (2008). As 

a simple analogy, the objective to be estimated in numerical values is measured by some inputs 

(stated in natural language). These inputs are called linguistic variable in fuzzy terminology. Every 

linguistic variable is measured by some linguistic terms (expressed in levels of intensity, e.g. low, 

average, high). Every term is associated with a membership function (MF). The MF refers to the 

extent of membership or belongingness. Generally, development of fuzzy if-then rules and the 

selection of membership functions (MFs) are based on the experience of the expert, the decision 

maker, and historical data.  Meanwhile, the exceptional efficiency of triangular and trapezoidal 

MFs in practical applications are discussed in Liou & Wang (1992).  These MFs are frequently used 

in modular product development research. With reference to triangular MF, mathematically, the 

MF is defined by three parameters; (a, b, c), as expressed in Figure 2.1. The main difference 

between the Mamdani and Sugeno fuzzy engine is in defuzzification (conversion of fuzzy output 

into numerical value) process (Gupta, 2015). According to the study, the Sugeno method (with 

embedded weighted average inference operator as the engine) has the advantage of faster 
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computational time while the Mamdani approach (with product inference operator) has better 

precision. 

Triangle(x: a, b, c) =

{
 
 

 
 

0                          x < a
x − a

b − a
             a ≤ x ≤ b

c − x

c − b
                b ≤ x ≤ c

0                            x > c

 

Figure 2.1: Triangular Membership function of Fuzzy inference system 

Kannan et al. (2015) employ fuzzy triangular membership function to evaluate the 

materials that different suppliers provide for new product development so as to make green 

product decisions. In order to develop a model that minimizes modularization cost, Nepal et al. 

(2005) apply fuzzy triangular membership function to obtain qualitative values from modules’ 

linguistic data.                                         

2.2.5        Knowledge gap addressed       

 According to the review in the previous sections, past studies reveal that 

remanufacturing-PSS synergy has been recommended as a business offering with high potential 

to resolve huge sustainability issues. However, only a few research provide some theoretical link, 

while a mathematical-based integration, especially during product development phase is still 

lacking.  Meanwhile it is also reported that modular architecture is widely acknowledged as a 

product development strategy that significantly influences product life cycle management, 

including product servicing and EOL decisions such as remanufacturing. Consequently, this study 

attempts to fill the knowledge gap by providing an analytical framework for making informed 

modular product configuration decision at the early phase of product development in order to 
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enhance the criteria that are crucial to the successful remanufacturing-PSS business offering.     

2.3         Methodology          

 The purpose of this research is to develop an optimization model that will identify the module 

variants (assessed in pairs) that should be included in product configuration at an early phase of product 

development, such that the serviceability of the product is enhanced when the product is offered in 

product service systems, and cleaning of the product core is enhanced when the product is 

remanufactured at its end of life/end of use.  The study applies fuzzy logic to obtain the compatibility 

indices of a pair of modular variants, with regard to the objectives to be improved. The decision variables 

are the pairs of module variants that could be grouped into the product. The coefficient of the decision 

variables in the objective function are the modular pair compatibility indices, which are the outputs from 

the fuzzy inference system.  For each of the two criteria, there are three measures. Every measure has 

five levels which are expressed in linguistic terms, and every term is associated with a membership 

function. Fuzzy rules are developed in collaboration with some experts. Using the membership functions 

of the three measures (or fuzzy inputs), the compatibility index is obtained for every modular pair with 

respect to each objective. The section is divided into two phases: description and development of the 

optimization model, and determination of modular pair compatibility indices via a fuzzy inference system. 

2.3.1        Model description and assumptions      

 The study considers an original equipment manufacturer (OEM) that employs a product 

service system to own and maintain its products while in use by the customers. The OEM will also 

remanufacture the product at its end of life (EOL) or end of use (EOU). As reported in section 

2.2.2, this type of product offering is based on the growing interests in remanufacturing-PSS 

product offering due to the environmental and economic benefits. The product is modular, with 

a number of variants for each module that may be provided by different suppliers. The benefits 
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of modular architecture is stated in section 2.2.3. The module variants differ by materials, 

breakdown rate, service requirements, frequency of service, service resources, cleaning 

operations, cleaning resources, and so on. This is the real life situation in which product 

development decision makers are confronted with parts, modules or suppliers’ selection 

problems in order to make product decisions from among several potential product alternatives. 

The OEM’s goal is to determine the module variants to include in the product, such that product 

serviceability is enhanced when the product is offered in PSS and core cleaning is enhanced when 

the product is remanufactured at its EOL/EOU. In order to assess the module variants thoroughly 

so as to determine viable module choices for the new product with regard to an essential 

criterion, we propose that module variants be evaluated in pairs. If there is odd number of 

modules, a dummy module is created. Figure 2.2 describes the development of a modular 

product with M modules, while there are multiple variants ni available for each module i.   

 

Figure 2.2: Modular product development considering multiple module variants                              

2.3.2   Optimization model        

 Consider a modular product with M modules. There are i, j  modules in M having k, and l 

number of variants. Every module must be included in the product, and only one variant of a 

module is required. A pair of modules i and j is assessed collectively to determine the extent of 
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their compatibility with regard to their serviceability and cleaning. Due the complexity involved 

when module variants are assessed in pairs and not individually, the problem is structured as a 

tree for simplification. At the first stage, one module is considered as a base module, while every 

other module is assessed in pair with the base module. These pairs are referred to as base 

modular pairs. Every branch β in the tree stems from a base modular pair.  A path α in a branch 

β refers to a set of product configurations that have the same pairs of modules i, j but different 

variants k, l. From a branch β, the product configurations from all paths α = 1… . t share similar 

base modular pair i, j (but not necessarily similar variants  k, l). A case study of modular product 

development is provided. Figure 2.3 depicts the modular pairwise assessment tree for the case 

study. Table 2.1 contains the notations and their descriptions. The problem is framed as a set of 

integer programming formulations.    
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Table 2.1: Notations 

 

Objective function          

 The decision variables are the pairs of two module variants that could be grouped or not. 

The compatibility index of the two modules are obtained from a fuzzy inference system. The 

objectives are to maximize product serviceability and core cleaning. 

1.Max S(X) = ∑∑∑SIikjlXikjl

nj

l=1

ni

k=1

m

i,j=1

                                                                             1 
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2.  Max K(X) = ∑∑∑KIikjlXikjl

nj

l=1

ni

k=1

m

i,j=1

                                                                          2 

Constraints. 

1. A module variant has to pair with not more than 1 variant of another modules.  

∑∑Xikjl

nj

l=1

ni

k=1

≤ 1                                                                       V i, j ∈ M,     i ≠ j            

2. From any main branch, modular pairs in product alternatives along a path are different 

from the modular pairs of other paths. Also, the number of product configurations from 

all paths in a main branch cannot exceed the limit of the branch.  

(∑∑∑Xikjl

nj

l=1

ni

k=1

q

γ=1

)yβ
α   ≤   ∑ yβ

α

t

α=1

                                                                         V β         4 

3. At least one product configuration must be obtained 

∑∑yβ
α

t

α=1

w

β=1

      ≥ 1                                                                                                                             5 

4. Two modular variants from different module alternatives can either be grouped or not. 

Xikjl =  {
1, if variant k of module i and variant l of module j are paired 

0,                                                                                                        Otherwise
    6 

5. Every product alternative that is selected from any path α is different from any other. 

yβ
α =  {

1, if a product configuration α is chosen along path β 
0,                                                                                             Otherwise

                  7 

6. Linearize the set of quadratic constraints in equation 4 



www.manaraa.com

20 
 

 
 

Zγ = (∑∑Xikjl

nj

l=1

ni

k=1

)yβ
α                                                                                                                   8 

Zγ ≤∑∑Xikjl

nj

l=1

ni

k=1

                                                                                                                              9 

Zγ ≤ yβ
α                                                                                                                                               10 

Zγ ≥∑∑Xikjl

nj

l=1

ni

k=1

+ yβ
α − 1                                                                                                           11 

Zγ, Xikjl , yβ
α ϵ {0,1}                                                                                                                         12          

7. For every branch β to make product configurations in  (4), linearize the non-linear 

constraints in (4)  with Zγ and add (9 − 11) to  (4) 

∑Zγ

q

γ=1

≤ ∑yβ
α

t

α=1

                                                                                                V β           13 

8. For a variant k for module i that is not compatible with variant l of module j, impose a 

penalty on the compatibility index, 0 for max objective, large number L for min objective. 

V IikjlXikjl   ,  Iikjl = {
0 for max objective
L for min objective

 ,     i, j ∈ M, i ≠ j, k, l ∋ Xikjl     14 

9. For any desirable variant k of module i that must be included in the product, pre-

determine a variant l of module j. For max objective, assign a large value L to their 

compatibility index, and for min objective, assign 0. 

V IikjlXikjl   ,  Iikjl = {
L for max objective
0 for min objective

 ,     i, j ∈ M, i ≠ j, k, l ∈  Xikjl                    15 
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2.3.3  Evaluation of the modular pair compatibility indices     

 As stated earlier, trapezoidal and triangular MFs are reported to be efficient for modular 

product development. The two MFs produce very similar deffuzzified output values.  In this study, 

the triangular MF is employed for more efficiency because it is defined by three parameters while 

the trapezoidal MF is defined by four parameters. Also, efficient computational time is sacrificed 

for better precision by selecting the Mamdani inference engine in order to mitigate product 

development errors. The criteria to be estimated are serviceability and core cleaning. For each 

criterion, there are 3 measures (or inputs). In FIS terminology, these are the linguistic variables. 

For every input, there are 5 levels (or linguistic terms), and every term is associated with a 

membership function. The output is referred to as a modular pair compatibility index. Table 2.2 

contains these descriptions. 

Table 2.2: Input-output variables from Fuzzy system 

 

As obtained from previous work, serviceability of a pair of modules is measured by the 

degree of accessibility of the modular pair, the degree of service resources shared by the pair, 
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and degree to which the pair can be serviced together (or frequency of service). Similarly, core 

cleaning is measured by the degree of similarity of the materials of the pairs, the degree of 

similarity of the type of dirt associated with the pair, and the extent to which the pair share 

cleaning resources. The linguistic terms associated with each input variable are as follows: very 

low, low, medium, high, and very high. For three inputs, each having five levels and one output, there 

are 𝟓 ∗ 5 ∗ 5 =  125 rules associated with a criterion.  The entire set of fuzzy rules and omitted here to 

save space. Examples of the rule format are as follows:  

IF (“Similarity of materials is low”, AND “Similarity of dirt is low” AND “Cleaning resources 

shared is high”) THEN (“Core-cleaning index is medium”)  

IF (“Frequency of service is medium”, AND “Service resources shared are medium” AND 

“Accessibility is very low”) THEN (“Serviceability index is low”)  

2.4 Case Study 

Consider a modular product development scenario. The product consists of six modules, 

each module having four variants. There are a total of 15 ∗ 16 = 240 decision variables 

representing modular pairing. There are 15 main paths, and along each path, 16 ∗ 16 ∗ 16 =

 4,096 product configurations could be made. In total, 15 ∗ 4,096 =  61,440 product 

configurations are possible. This analysis is applicable to any product with m modules, and ni 

variants available for module mi. The modeling framework is structured as a tree to enable 

modules to be assessed in pairs. This framework is depicted in Figure 2.3. The levels of 

compatibility of modular pairs, measured as serviceability and core cleaning indices are obtained 
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from fuzzy inference system and shown in Tables 2.3 and 2.4 respectively. These indices provide 

the coefficients of the decision variables in the objective functions of the optimization model.  

For example, considering the first branch β =  1 in the tree, there are paths α =  3. On every 

path, 16 ∗ 16 ∗ 16 = 4,096 product alternatives that are possible. All the product configurations 

on these path have similar modular pairs i, j but different variants k, l. For the branch β, there are 

3 ∗ 4,096 = 12,288 product alternatives. The products alternatives in this branch all share 

similar base modular pair i, j but different variant k, l.  

For the 5 branches in the tree, there are 12,288 ∗ 5 = 61,440 product alternatives that 

could be made. Accordingly, the formulation for every branch follows similar approach. 

 

Figure 2.3: Modeling framework for product configuration decisions 

For example, according to (4), the constraint formulation for the branch β = 1 is: 
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(∑∑XAiBj

b

j=1

a

i=1

+ ∑∑XCkDl

d

l=1

c

k=1

+∑∑XEnFo

f

o=1

e

n=1

)y1
α1 + (∑∑XAiBj

b

j=1

a

i=1

+∑∑XCkEn

e

n=1

c

k=1

+ ∑∑XDlFo

f

o=1

d

l=1

)y1
α2

+(∑∑XAiBj

b

j=1

a

i=1

+∑∑XCkFo

f

o=1

c

k=1

+ ∑∑XDlEn

e

n=1

d

l=1

)y1
α3 ≤ ∑y1

α

t

α=1

                                           4 

Similar constraints are written for all branches  β = 1… .w 

Serviceability and core cleaning indices are obtained from a fuzzy inference system 

according to the procedure described above. These indices are listed in Tables 2.3 and 2.4. 

 Table 2.3: Modular pair serviceability indices  
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Table 2.4: Modular pair core-cleaning indices  

 

With a pair of different module variants as decision variables, and an index from a fuzzy 

system as coefficients in the objective function, the optimization problem is coded in Python 

programming language and the Gurobi solver is called from a python environment for 

implementation. The product configurations whose modules will enhance serviceability and core 

cleaning are identified and listed in Table 2.5. 

Table 2.5: Optimal product configurations 
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The result shows that out of 61,440 product configurations, there are ten viable product 

configurations considering serviceability and core cleaning. Given the fact that industries are no 

longer looking for one best solution to a problem but a set of viable solutions that permits 

flexibility of choice, the result of this study provides such desirable solution space. This solution 

is of significant benefit to the OEMs that offer/intend to offer their product in PSS and also serve 

as the original equipment remanufacturers (OERs). It helps to guide modular product 

development decision making, and also helps in a module’s supplier selection.  

2.5 Conclusion 

Although integration of product service systems and remanufacturing has been 

increasingly recommended, analytical integration of these concepts remains sparse. To fill this 

lacuna, we identified two criteria that are critical for the success of both product service systems 

and remanufacturing: product serviceability and core cleaning. Optimization model was 

developed to determine the module variants that should be included in a product among several 

available module variants in order to ensure improved product serviceability and core cleaning. 

Modules are assessed in pairs and the compatibility indices of module pairs are obtained via fuzzy 

inference system. In order to test the conceptual model, a new product development scenario is 

provided in which a modular product that consists 6 modules is to be developed, there are four 

variants available for each module. We provide an analytical approach to bring the essential 

criteria into the early phase of modular product development. Among 61,440 different product 

alternatives, the result of the analysis shows that 10 product configurations are most viable for 

enhanced remanufacturing and PSS.  This outcome is particularly important to the OEMs that are 

already engaged in both PSS and remanufacturing, as well those that contemplate to offer their 
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product in PSS and also serve as the remanufacturer. The result provides informed guidance in 

making product architecture decisions at the front-end of product development such that the 

product configuration(s) that will realize effective remanufacturing-PSS business are considered 

by the PD decision makers. Research on remanufacturing-PSS integration are currently emerging. 

As much as we know, few studies that relate to this synergy only provide theoretical approach. 

This study is the first attempt to provide analytical assessment of product configurations at the 

early phase of modular product development with regard to remanufacturing-PSS integration.  
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CHAPTER 3: INSTILLING COST IMPLICATIONS INTO MODULAR PRODUCT   

3.1 Introduction          

 A large body of research concurs that manufacturing activities contribute substantially to 

sustainability issues. In order to curtail the negative impact of manufacturing, there have been 

increasing global regulatory measures such as Extended Producers Responsibility (EPR) and 

Waste Electrical and Electronic Equipment (WEEE) which require manufacturers to be 

responsible for the post-consumer phase of their product (Chen & Chang, 2013; Errington & 

Childe, 2013). The primary aim is to reduce heavy dependence on virgin resources, conserve 

energy, reduce pollution, mitigate product disposals, and transform the embedded values in the 

retired product into operational usefulness. Consequently, some product end-of-life 

management strategies have evolved, amongst which remanufacturing has been acknowledged 

as the most viable (Ma & Kremer, 2014).      

 Remanufacturing refers to the process that returns a used product to like new condition. 

Details of the remanufacturing process are contained in (Ijomah et al., 2007; Sundin & Bras, 

2005). Several manufacturers including Caterpillar, Rank-Xerox, Hewlett Packard, and Océ have 

reported tremendous savings through product remanufacturing (Errington & Childe, 2013). In 

2005 alone, Caterpillar reports a $1 billion revenue from the sales of the remanufactured 

products (Ferguson et al., 2009). Remanufacturing business was a £5 billion-worth industry in the 

UK in 2004 (Charter & Gray, 2008). In the US, the value of remanufacturing industry in 2009 was 

more than $43 billion while employing over 180000 full-time jobs (Commission, 2012). However, 

remanufacturing is plagued by certain limitations with regard to the used products that are 

returned at the end-of-life (EOL). These constraints include unknown quality, quantity, and time 
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of core recovery. These bottlenecks have considerably hampered remanufacturing activities. 

About 80% of manufactured products are disposed at their End-of-life despite all EOL 

management strategies (Commission, 2012). Consequently, manufacturers are looking for more 

efficient means of product offering in order to comply with regulations, meet customers’ needs, 

and optimize profitability.         

 Product service system (PSS) is conceived as a business offering with capacities to remedy 

most of the challenges in remanufacturing, besides other benefits. PSS is a business philosophy 

that emphasizes product functionality and not ownership. In order words, the PSS thinking is that 

the manufacturer is responsible for ownership, maintenance, removal, and replacement of the 

product while the function of the product is offered to customers. A growing number of original 

equipment manufacturers (OEMs) are offering their product in PSS. Ferguson et al. (2009) report 

that $213 billion was traded in leased or PSS business in 2005. As a result of the significant 

benefits of remanufacturing and product service system, the combination of these concepts as a 

business offering has been increasingly suggested. In addition, growing number of developed 

economies are overwhelmed with physical product and more customers are embracing 

ownerless product usage (Lindahl & Sakao, 2009).      

 Therefore, PSS-remanufacturing business permits the OEM to meet customers’ 

expectation and sustain operational viability amidst stiff competition that continuously confronts 

manufacturers. Remanufacturing business is also affected by negative perception of 

remanufactured product. However, the concerns of the OEMs that customers are not favorably 

disposed towards remanufactured product in a traditional product selling is allayed due to 

product ownerless philosophy in PSS. Sundin et al. (2008) report that the effectiveness of both 
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remanufacturing and PSS is largely influenced by the PD. Subramoniam et al. (2009) report that 

it is extremely difficult to remanufacture a product if such decision is not considered at the PD 

phase. According to the study, about 75% of used products that are recovered are not designed 

for remanufacturing thereby leading to operational impediments. Hatcher et al. (2011) state that 

OEMs that are involved in remanufacturing their product are more enthused to design for 

remanufacturing. On a similar note, Qu et al. (2016) note that the cost of operations and 

efficiency of PSS rest heavily on PD decisions. The study concludes that the success of PSS is 

largely dependent on modular product design. As reported by several researchers, modular 

design is considered an effective PD strategy (Chung et al., 2011; Nepal et al., 2008).  Hatcher et 

al. (2011) highlight the attempts of researchers to provide some guidelines to incorporate design 

for remanufacturing into PSS. Sundin & Lindahl (2008) provide the first theoretical approach to 

combines PSS and remanufacturing. The study was followed by Sundin et al. (2009) which note 

that improved PSS-remanufacturing model will enhance reverse logistics and boost design for 

remanufacturing. Other studies on PSS-remanufacturing business are contained in Guidat et al., 

(2014). These studies conclude that PSS-remanufacturing business requires further research. 

Meanwhile, analytical models are missing in the research. Mathematical techniques to integrate 

PSS and remanufacturing at the PD phase are rare in literature. Recently, Fadeyi et al. (2017) 

develop an optimization model for PSS-remanufacturing integration at the PD phase. The model 

considered core cleaning and product serviceability as being critical to the success of PSS and 

remanufacturing. However, the model did not take the importance of product lifecycle costs into 

account. Chiu & Okudan (2014) and Nepal et al. (2008) report that over 70% of product lifecycle 

cost is determined by the PD decisions. Since cost consideration during PD is vital to the product 
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lifecycle performance, it is expedient to bring product lifecycle costs into account at the PD phase 

in order to realize an efficient PSS-Remanufacturing enterprise. Additionally, transportation cost 

becomes more significant in PSS because the OEM is responsible for the product performance 

during the use phase, and also for reverse logistics. Furthermore, the optimization model in 

Fadeyi et al. (2017) stops at the identification of the optimal product architecture. The analyses 

of the multiple optimal product configurations to determine the relative benefits of the 

configurations are missing.          

 The objective of this study is to determine the product configurations that minimize 

design, (re)manufacturing, and transportation costs while maximizing product serviceability and 

cleaning by implementing the PSS-remanufacturing optimization model. Furthermore, the study 

performs sensitivity analysis to provide comparative advantages of the optimal product 

configurations. The primary goal of the study is to provide product architecture decision guide to 

the OEM that is involved in PSS-Remanufacturing business as well as the potential OEMs in this 

regard.                                                                                                                                                           

3.2         Literature review                                                                                                        

3.2.1     Influence of modular architecture on remanufacturing                                          

   Modular design plays a significant role in the success of remanufacturing process. 

Modular design permits aggregation of parts to form a complex product without compromising 

the product integrity (Nepal et al., 2007). Also, modular design simplifies assembly and 

disassembly of parts of a product (Ma & Kremer, 2014). Researchers agree that product 

disassembly plays a crucial role in product remanufacturing. Hatcher et al. (2013) identify the 

processes that are involved in remanufacturing to include disassembly, inspection, cleaning, 
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reprocessing and reassembly and emphasize that other processes are largely influenced by the 

degree of product disassembly. Vyas & Rickli (2016) further reiterate the criticality of disassembly 

to remanufacturing business and develop methods to extract disassembly data to determine 

disassembly feasibility in order to enhance remanufacturing. Behdad (2013) investigates the 

economic benefits of disassembly process of the used product. The study determines that partial 

disassembly or disassembly at the modular level is an efficient strategy if the OEM disassembles 

its own product and the product usage data is known. The effectiveness of partial disassembly 

depends on the availability of product data such as resilience, durability, failure rate, among 

others. Mutha & Pokharel (2009) develop network design for reverse logistics and 

remanufacturing in which modules from recovered products are assigned into remanufacturing 

facilities without complete disassembly.  Partial disassembly at the modular level is a viable 

strategy in the PSS-remanufacturing enterprise because the OEM is able to monitor the products’ 

health, obtain product lifecycle data, and save significant resources that are associated with 

complete product disassembly during remanufacturing process. Among the remanufacturing 

processes, the importance of core cleaning has been emphasized by previous studies 

(Subramoniam et al., 2010; Sundin & Lindahl, 2008).                                                                                   

3.2.2   Effectiveness of modular design for product service system   

 As conceptualized by Goedkoop et al. (1999), PSS refers to a system of tangible products 

and intangible services designed and combined so that they are jointly capable of fulfilling final 

customer needs. At the conception of PSS, product refers to “a tangible commodity to be sold” 

and service as “an activity with an economic value and is performed on a commercial basis”. 

Currently, PSS is attracting huge research interest due to its sustainability benefits. Most of the 
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available research on PSS are overly concentrated on the service aspect, with little reference to 

the tangible product. Sundin et al. (2008) emphasize that despite the huge attention given to the 

service aspect of PSS, the design of the physical product will remain the prime driver of PSS 

success. Sundin et al. (2009) take product design processes into consideration in designing an 

efficient PSS offering. Qu et al. (2016) analyze product structure with case studies and 

recommend product modularity to manufacturers as the effective configuration that enhances 

PSS efficiency and lowers cost of operations. Yang et al (2009) note that while the static product 

data remains constant throughout the product lifecycle, it is important to capture product 

dynamic data such as reliability, servicing, preventive maintenance, market performance. 

Modular design significantly enables such data collection. In addition, customers’ requirements 

are constantly changing and modification of few modules are sometimes necessary to meet these 

change. Song & Sakao (2017) report that modular designs enable PSS to cope effectively with the 

changing customer demands. Thus, modular design enables PSS business to be more competitive 

than in traditional product selling.                                       

3.2.3     Importance of cost in PSS-remanufacturing business   

 Researchers report that about 70% of product lifecycle cost is determined by product 

development decisions (Chiu & Okudan, 2014; Nepal et al., 2008). Therefore, it is important to 

take product lifecycle costs into product architecture decision during at early phase of PD in order 

to facilitate PSS-remanufacturing offering. Teunter et al. (2008) studied product remanufacturing 

alongside the traditional manufacturing process and conclude that manufacturing and 

remanufacturing of the same product are linearly related. By implication, when the 

manufacturing cost of product A is higher than product B, there is a higher remanufacturing cost 



www.manaraa.com

34 
 

 
 

of product A. Therefore, remanufacturing cost may be assumed as a certain proportion of the 

manufacturing cost. Furthermore, transportation cost becomes more critical in PSS because the 

OEM is responsible for the product lifecycle. Transportation cost is usually estimated in 

remanufacturing and product supply chain. Mutha & Pokharel (2009) estimate transportation 

cost with expected distance covered and as a percentage of overhead cost. 

 Gavidel & Rickli (2015) extensively discussed the importance of core sorting based on the 

quality level in remanufacturing facilities and remarked that high cost could be a major concern 

in remanufacturing. However, the quality of the core, hence the cost, are controllable to a larger 

extent in an OEM-managed PSS. The resulting benefit of lower cost of remanufacturing translates 

to a win-win scenario for both the OEM and the customer-lesser operating cost to the OEM, 

lower cost of the remanufactured product to the customer. On another note, the age of used 

product is often used to assess its worth for remanufacturing purposes.  Ferguson et al. (2009) 

and other researchers have used the age of used product to assess its worth.  Although the age 

of a product plays an important role on its quality level and hence its cost, however, product 

usage is another important factor in the evaluation of the worthiness of core with regard to 

quality and cost. Gavidel & Rickli (2017) find that the usage level of the used product is more 

relevant in determining the worth of core than age. Unlike in product selling, PSS provides an 

effective avenue to the OEM (as the product owner) to effectively monitor the usage level of 

product. This permits the effective evaluation of the cost of the remanufactured product.  

Consequently, the cost of a remanufactured product could be appropriately determined, to the 

benefits of the OEM and the customers.                                      

3.2.4    Multi-objective optimization in product development    
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 Multi-objective optimization has been widely employed in the research involved in 

modular product development. For the development of mathematical models at the product 

development stage, it is important to quantify the uncertain data that relate to the performance 

of the product lifecycle. The fuzzy system has been largely employed to capture such imprecise 

and uncertain product data. Uncertainty refers to the gap between the amount of information 

that is required to perform the task at hand and the amount of information that is already 

possessed (Büyüközkan & Feyzıog̃lu, 2004). Fuzzy system is capable of converting uncertainties 

into quantitative terms for computational purposes when the imprecise data are categorized in 

linguistic terms such as low, medium, and high. Büyüközkan & Feyzıog̃lu (2004) apply fuzzy 

analytic hierarchy process to determine the product structure that optimizes firms’ management, 

profitability and utilization of resources. Aguwa et al (2012) obtain the vagueness in stakeholders’ 

data via fuzzy engine and applied Archimedean Goal Programming (GP) to develop an optimal 

product configuration for medical devices. (Nepal et al., 2008) obtain uncertain data in product 

decomposition through fuzzy logic and applied Chebyshev GP to develop product architecture 

that enhances manufacturability and reduces cost. Previously, (Nepal et al., 2005; Nepal et al., 

2007) had developed Archimedean GP model for product modularization, having obtained the 

indices of the objectives through fuzzy engine. Most of the research in PD apply either triangular 

or trapezoidal membership function of fuzzy system.     

 Meanwhile, the multi-criteria optimization methods described above provide a single 

optimal solution as the product architecture. However, manufacturers are looking beyond a 

single solution approach towards other method that offers a set of solutions so that comparative 

analyses could be performed to enable efficient decision making. Currently, such a method are 
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rare in product development literature. Multi-Attributes Utility theory (MAUT) is a decision 

making concept that provides analytical procedures which permit multiple alternatives to be 

compared. According to Chelst & Canbolat (2011), one of the fundamental and difficult 

challenges that confront decision makers is how to make trade-off among alternatives, but MAUT 

provides such decision platform. The theory permits weight and probability values to be assigned 

to measures through which the attributes or objectives are assessed. The analysis result assigns 

a utility value that ranges from 0 to 1 to each objective for comparison. More importantly, the 

comparative assessment of all objectives can be performed through sensitivity analysis. The 

application of MAUT through Logical Decisions software package, is contained in Chelst & 

Canbolat (2011).                                                                     

3.2.5      The missing gap addressed        

 As stated in the previous sections, PSS-remanufacturing enterprise could be significantly 

improved by modular architecture. Also, it is emphasized that product lifecycle costs should be taken into 

account at the PD phase because PD decisions determine over 70% of the product lifecycle costs. 

Currently, an analytical solution to determine the modular architecture that minimizes costs in a PSS-

remanufacturing enterprise is missing. The objective of this study is to incorporate design, manufacturing, 

and transportation cost data into product architecture optimization model at the PD phase. Being major 

drivers of successful PSS and remanufacturing, serviceability and core cleaning data are incorporated into 

the model development. Furthermore, this research performs sensitivity analyses that provide 

comparative benefits of the optimal product architectures. Accordingly, the research bridges a knowledge 

chasm by providing data-driven guidance for making product architecture decision at the early phase of 

PD in order to enhance PSS-remanufacturing business at reduced costs. In addition, the study presents an 

analytical technique to determine the relative importance of the optimal product architectures in order 
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to enhance decision making.                                

3.3      Methodology          

 The research describes a PSS-Remanufacturing scenario in which the OEM is responsible for the 

product ownership. This implies that the OEM is accountable for servicing, upgrading, replacement, and 

product retrieval. Furthermore, the OEM will remanufacture its product at the end-of-use. The goal of the 

OEM is to determine the appropriate modular product configuration(s) given that several module variants 

are available from suppliers. The aim of this research is to determine these product configuration(s) so as 

to minimize cost, maximize product serviceability and cleaning, in other to realize an efficient PSS-

Remanufacturing enterprise.                                                       

3.3.1        Problem description         

 The model considers the development of a modular product architecture to be offered in a PSS-

remanufacturing scenario. The product consists of m modules. There are different module sets i & j. There 

are k variants available for module set i and l variants for module j from which k − l pair will be clustered 

into the product framework until there are m modules in the product. If the product requires odd number 

of modules, a dummy module will be created for modelling purpose. This description fits a typical product 

development environment where parts are available to the OEM through multiple suppliers and the OEM 

is required to make supplier selection decision. Generally, modules are assessed on their individual merits 

during product development. This study proposes assessment by modular pairing so that the modules can 

be relatively assessed such that modules that jointly optimize PSS-remanufacturing objectives are 

included in the product architecture. This modular PD scenario is described in figure 3.1. The model is 

developed with the i − j module pairs as the decision variables. At the first level, one module set is 

arbitrarily chosen as the base module while every module variant from other module sets is evaluated in 

pair with the variants of the base module. A pair with the base module is referred to as base modular pair. 

This combination makes the problem complex. The modeling framework is structured as a tree for 
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tractability and modeling, and depicted in figure 3.1. A base modular pair starts a main branch β. Every 

path α in a main branch β represents product configurations with the same  i − j modules but different 

k − l variants. The problem is formulated as a binary integer programing (BIP) problem.  Binary variables 

yβ
α are introduced at the nodes along path α in a main branch β to distinguish the every product 

configuration, thereby leading to non-linear problem. In order not to call the optimality of the solution 

into question, the non-linear constraints are linearized.  

       

Figure 3.1: Development of modular architecture for PSS-Remanufacturing enterprise 

The notations below is used for the model development  

Indices and parameters 

M PD environment containing module sets. A module set contains different variants  

m Number of modules to cluster into the product 

i, j  Sets of modules available for m 

n The number of module variants in module set i or set j  
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k Variant of module set i ; k ϵ i 

l Variant of module set j ; l ϵ j 

β Branch in the tree 

w  Number of branches β.   

t Number of paths in a tree branch  β 

α Path in a branch of the tree 

γ Node along path α in a branch β representing modular pairs of same i & j.   

q Number of nodes of on path α 

y Indicator variable to distinguish each configuration of on a path α in a branch β 

λ Number of Indicator variables at node γ  

Z Binary variable to linearize nonlinear constraints  

Xikjl  Decision variable; a pair of variant k of set i and variant l of set j  

Iikjl  Compatibility index of a pair of variant k of set i and variant l of set j  

SI Serviceability index 

KI Core-cleaning index 

CI Cost index 

3.3.2 Mathematical model 

Objective function          

 The decision variable is a pair of variant k from module i and variant l from module set j 

which are either jointly included in the product or not. Cost index is the sum of the relevant cost 

data for a pair of modules. Serviceability and core cleaning indices are obtained as module pair 

compatibility indices from fuzzy engine.  
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               1.  Min C(X) =  ∑∑∑∑CIikjlXikjl
k,l

nj

l=1

ni

k=1

m

i,j=1

                                                                   (1) 

2.  Max S(X) = ∑∑∑SIikjlXikjl

nj

l=1

ni

k=1

m

i,j=1

                                                                            (2) 

3.  Max K(X) = ∑∑∑KIikjlXikjl

nj

l=1

ni

k=1

m

i,j=1

                                                                           (3) 

Constraints. 

4. A variant k from module set i cannot be paired with more than 1 variant of module set j   

∑∑Xikjl

nj

l=1

ni

k=1

≤ 1                                                                   ∀ i, j ∈ M,     i ≠ j      (4) 

5. Along a path α in a branch β, k − l variants from module sets i & j  are paired to form 

unique product configurations. In addition, the total configurations that can be produced 

from all paths in branch β cannot exceed the total configurations on  .  

∑(∑∑Xikjl

nj

l=1

ni

k=1

)

q

γ=1

 yβ
α   ≤   ∑ yβ

α

t

α=1

                                                 ∀ β                  (5 

6. A variant k from module set i and a variant  l  from module set j can either be paired or 

not.  

Xikjl =  {
1 
0 
                                                                                                                         (6) 

7. From a path α in a branch β, every product configuration is unique. In order words every 

configuration has at least one k − l module pair that is different from others.  
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 yβ
α =  {

1   if a configuration is chosen from α
0                                                        otherwise

                                       (7) 

8. Linearize the sets of non-linear constraints in (5) 

Zγ = (∑∑Xikjl

nj

l=1

ni

k=1

)yβ
α                                                                                                         (8) 

Zγ ≤∑∑Xikjl

nj

l=1

ni

k=1

                                                                                                                    (9) 

Zγ ≤ yβ
α                                                                                                    ∀y                           (10) 

Zγ ≥∑∑Xikjl

nj

l=1

ni

k=1

+∑yβ
α

ny

λ=1

 − ny                                                        ∀β                            (11) 

Zγ, Xikjl , yβ
α ϵ {0,1}                                                                                                                (12)          

9. For every branch β to make product configurations in  (5), linearize the non-linear 

constraints in (5)  with Zγ and add (9 − 12) to  (5) 

∑Zγ

q

γ=1

≤ ∑yβ
α

t

α=1

                                                                         ∀ β                         (13) 

10. At least one product architecture must be developed  

      ∑∑yβ
α

t

α=1

w

β=1

      ≥ 1                                                                                                                   (14) 

11. If variant k module i is not compatible with variant l of module j, penalize their 

compatibility index, 0 for max objective, large number L for min objective. The same 

approach is followed if variant k cannot be remanufactured.   



www.manaraa.com

42 
 

 
 

 Iikjl = {
0 for max objective
L for min objective

 ,     i, j ∈ M, i ≠ j, k, l ∋ Xikjl                             (15) 

12. If module variant k of module i that must be included in the product, pair k with a pre-

determined variant l of module j. For max objective, assign a large value L to their 

compatibility index, and for min objective, assign 0. 

 Iikjl = {
L for max objective
0 for min objective

 ,     i, j ∈ M, i ≠ j, k, l ∈  Xikjl                                  (16) 

3.3.3     Estimation of cost and compatibility of module pairs 

As stated earlier, researchers employ proxy measures for the transportation cost. 

Accordingly, this study uses the weight of the module variant as a proxy of the transportation 

cost. The model is developed with a modular pair as the decision variable, therefore costs are 

obtained for module variants in pairs. Product serviceability plays a significant role in PSS. It 

determines the extent to which product could be retained in operational effectiveness. 

Serviceability of modular pair was measured by the degree of accessibility, the service resources 

shared by the module pair, and the service requirements of the pair (frequency of service).  

Similarly, core cleaning operation plays an effective role in remanufacturing. Core cleaning 

objective is measured by the similarity of materials of the module pair, the similarity of the type 

of dirt that is related to the module pair, and degree of cleaning resources that are shared by the 

pair. There are five levels associated with every measure. These measures are: Very low, low, 

medium, high, and very high. Each level is associated with triangular membership function of the 

fuzzy engine.  As stated previously, the triangular MF is grossly employed in product development 

studies to quantify the vagueness in the product lifecycle. The study adopts the assumptions of 

the previous researchers that triangular MF is appropriate for modular architecture 
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development. A detailed description of how to obtain compatibility indices using triangular 

membership function is contained in contained in (Fadeyi et al., 2017).  

3.3.4  Application of multi-criteria technique 

Multi-attribute utility theory (MAUT) is a powerful tool in decision analysis due to its 

prowess in joint assessments of multiple alternatives. Besides its ability to assess conflicting 

objecting, another important aspect of the utility function is that it enables comparative 

evaluation of alternatives with different metrics and units. Such capacity is built into the Logical 

Decisions software. The study employs this software for the assessment of the multiple product 

configurations.                                                                                            

3.4        Model implementation with a case study.      

 The cost data of a subassembly was provided by an auto industry in Michigan, United 

States. There are six modules in the subassembly. Four variants are available for every module. 

For identification purpose, the modules sets are labeled A, B, C, D, E, and F. The variants of the 

module set A are referenced as A: A1, A2, A3, A4. Other module variants are recognized 

accordingly.  

With regard to the product development strategy in figure 2.1 in which module variants are 

clustered in pairs. At the first level, there are 5 decision nodes, because there are 6 module sets. 

The five nodes are the base modular pairs that begin five main branches.  At this level, two 

candidate modules have been determined, remaining four modules to cluster into the product. 

At the second level, every node leads to three decision nodes (since four modules are remaining). 

Therefore, there are a total of 15 nodes at level 2. At this level, four modules have been included 

in the product, leaving out 2 more modules. At level 3, every node at level 2 leads to one node (a 
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pair on modules is required). Therefore, there are 15 nodes at level three. In total, there are three 

paths in every branch, giving a total of 15 paths in the tree. Along every path, there are three 

decision nodes from which 3 modules pairs are required. Four variants are available for every 

module, so there are 4 ∗ 4 = 16 module variant pairs (decision variables) at every node. 

Therefore, there are 16 ∗ 16 ∗ 16 = 4096 product configurations along a path. In this PD 

environment, a total of 15 ∗ 4096 = 61,440 product configurations are potentially available. 

The design and manufacturing cost data that are provided by the OEM are contained in Tables 

3.1 and 3.2. The cost data are presented for a pair of modules. The weights (as estimates of the 

transportation cost) of the module variants are presented in table 3.3. Similarly, a value 

represents the weights of a module pair.  These values are the cost indices (CI) in the optimization 

model. 
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Table 3.1: Design cost modular pair indices 

Table 3.2: Manufacturing cost modular pair indices 
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Table 3.3: Estimation of Transportation cost indices 

 

Furthermore, the degree of compatibility of the modular pairs with respect to product 

serviceability and core cleaning is obtained through the fuzzy system. The data are contained in 

Tables 2.3 & 2.4 respectively. The optimization model is implemented in Gurobi-python interface. 

The optimal architectures for the objectives are contained in table 3.4. 
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Table 2.3:  Modular pair serviceability indices  

 

Table 2.4: Modular pair core-cleaning indices 
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Table 3.4: Product architectures for decision making 

 

It is important to provide further analyses to determine the comparative benefits of the 

optimal configurations. We employ multi-attribute utility theory (MAUT) as provided by Logical 

Decisions for Window. For these analyses, the study obtains the objective values the optimal 

configurations with regard to all objectives as required by MAUT. These values are listed in table 

3.5 as the strength indices of the product configurations. 
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Table 3.5: Strength indices of optimal architectures 

 

From the analysis result, figure 3.2 shows the utility ranking of the product configuration 

indicating that product architecture 2 has the highest utility value. With other optimization 

methods that produce a single optimal solution such as GP, this architecture corresponds to the 

optimal solution. The strength of this product architecture lies on its potential for design and 

manufacturing cost reduction. The sensitivity analysis in figure 3.3 provides clearer comparative 

advantages of the configurations. The first six architectures on the utility ranking scale are 

involved in the analysis. The first vertical line depicts the overall utility value, with the product 

architecture 2 topmost ranked, while architecture 7 ranks least.  However, this solution is not 

robust. As the graph moves towards serviceability criterion, architecture 7 ranks topmost while 

architecture 2 ranks least. Similarly, as the graph approaches core-cleaning criterion, architecture 

11 that is ranked fourth on the utility scale becomes the most viable product architecture, 
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implying higher remanufacturing value. Another observation shows that product architecture 3 

is ranked highest in transportation cost reduction.  

 

Figure 3.2: Assessment of product architecture alternatives     

 Notice that architecture 2 and 1 are exactly the same. They contain the same module 

variants that are clustered into the product in a different pairing. They have the same values of 

cost indices, but slightly different values of serviceability and core cleaning. This is due to the 

marginal error of deffuzzification process of the fuzzy system. However, the difference did not 

alter any decision since they are closely ranked on the two objectives. 

 

Figure 3.3: Sensitivity of product alternatives to model objectives 
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In decision making, an OEM may decide on either architecture 2 due to the savings in 

design and manufacturing costs. The OEM will then need to seek further improvement on other 

objectives. Similarly, architecture 7 could be the preferred option for the OEM considering that 

it ranks highest in serviceability and ranks second in core cleaning. However, this option ranks 

very low in costs reduction. With this option, the OEM will have to find alternative means to 

reduce cost. These may include considering local module supply or redesigning the 

(re)manufacturing facilities. Furthermore, architecture 11 has the highest remanufacture value 

and ranks second in terms of transportation cost reduction. The OEM may also make this the 

choice architecture if it has the capability to remedy the weaker areas. These analyses provide 

informed platform to guide the OEM in product architecture decision making.                                        

3.5         Conclusion          

 PSS-Remanufacturing business is a promising enterprise that is attracting the focus of a 

growing number of OEMs. The success of these business rest heavily on PD decision while these 

decisions account for over 70% of product lifecycle cost. Transportation cost is especially 

essential in PSS because the OEM is responsible for product’s ownership throughout its lifecycle. 

Having determined the critical importance of cost in the product lifecycle, the study obtains real-

life design and manufacturing cost data from a notable OEM and uses the weight of module 

variant as a proxy for the transportation cost. Similarly, product serviceability and core cleaning 

are identified to be essential to the success of PSS-Remanufacturing business. The study obtains 

the compatibility indices of module pairs with regard to serviceability and core-cleaning through 

fuzzy system. Similarly, the cost data are also considered for the module pairs at the PD phase.   
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The study improves on an optimization model that was developed previously by 

incorporating costs considerations into the early phase of product development. The model was 

tested with the case study involving the development of a 6-module product (subassembly). 

There are 4 variants available for every module. The implementation of the optimization model 

in Gurobi-python interface produces 13 optimal product configurations. These product 

configurations minimize transportation, design and (re)manufacturing costs while maximizing 

product serviceability and cleaning processes in other to enhance PSS-remanufacturing 

enterprise.  Furthermore, the study applies MAUT technique through logical decisions for 

windows (LDW) to provide sensitivity analyses of the product configurations. The results indicate 

that some product configurations that a ranked low in overall utility have some comparative 

benefits. These analyses reveal that the OEM may prefer a configuration that is strong on 

desirable objectives and pursues improvement on the objectives on which it is deficient. The 

study provides an analytic approach to guide product architecture decision at the early phase of 

PD so as to enhance PSS-remanufacturing business. Furthermore, it offers broader decision 

horizon to the product architecture decision managers through the sensitivity analyses. This 

research offers a unique contribution to the PSS-remanufacturing research domain.  
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CHAPTER 4: INCORPORATING SUSTAINABILITY INTO MODULAR DESIGN                          

4.1  Introduction          

 Due to the substantial benefits that are embedded in remanufacturing and PSS, the 

integration of these concepts as a business offering has been recommended (Hatcher et al., 

2011). Currently, the PSS-remanufacturing business is increasingly gaining the attention of both 

the industry and the research communities. The business initiative is intended to take the 

advantages of remanufacturing and remedy its limitation concurrently, and also realize other 

benefits of PSS. Among the product EOL management strategies, remanufacturing is adjudged 

the most viable in terms of economic and environmental gains (Butzer et al., 2014). However, 

the remanufacturing business is significantly impeded by certain factors. These include the 

quality level, the volume, the recovery time of cores (used product), as well as negative 

perception of the remanufactured product. PSS is a business offering in which the OEM is 

responsible for product’s ownership while the product is offered to customers for use (Song, 

2017).             

 The PSS-remanufacturing business permits the OEM to monitor the product usage and 

remedies the problems that are identified with remanufacturing to a large extent. Thus, PSS-

remanufacturing business is considered a more sustainable product offering. Researchers 

maintain that PD decisions significantly influence remanufacturing (Sundin et al., 2009), and PSS 

(Qu et al., 2016). In addition, researchers claim that product modularity is an efficient PD strategy 

(Kremer & Gupta, 2013). Furthermore, the fundamental assumption is that PSS enhances 

sustainability because fewer products (than in the traditional product offering) are required to 

meet the customers’ needs, since the PSS is predicated on product sharing among multiple users. 
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However, the assumption is flawed if the production of the modules has a substantive negative 

impact on the environment. For example, lesser environmental impact is associated with the use 

phase of a lead-acid battery, however, its production yields significantly high lead contamination 

(Tian et al., 2017). Therefore a PSS-remanufacturing business may not realize the acclaimed 

sustainable benefits unless sustainability consideration is given to the production of the parts 

that constitute the product. Therefore, it is essential to consider the environmental impacts that 

are associated with the modules in order to develop a modular product that could be deemed 

environmentally friendly. One suitable means of instilling environmental considerations into the 

modular product at the PD phase is to perform the lifecycle impact assessment of the modules 

that constitute the product.  LCA offers an appropriate method to perform such environmental 

assessment.            

 In addition, Kremer et al. (2016) conclude that sustainable product development should 

consider other aspects of sustainability of the product lifecycle other than environmental 

impacts. The PSS-remanufacturing model in Fadeyi et al. (2017) determines the product 

architectures that optimize core-cleaning and serviceability. Enhanced core-cleaning increases 

the quality of remanufacturing, implying cost savings (Gavidel & Rickli, 2017). Charter & Gray 

(2008) report that remanufactured products cost about 40% to 65% less than a similar new 

product.  Similarly, an improved product serviceability increases the efficiency of the PSS by 

ensuring higher product availability (Sundin et al., 2009), and lowers the costs associated with 

product failures (Qu et al., 2016). Consequently, the PD optimization model that Fadeyi et al. 

(2017) develop for PSS-remanufacturing business has embedded cost-saving implication.  
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In order to develop the environmentally benignant modular product, this study performs 

the LCA of the module variants to determine the product architecture with minimal 

environmental impact. Similarly, the study improves the previous optimization model in Fadeyi 

et al. (2017) and determine the architectures that enhance the core cleaning and product 

serviceability.  Having obtained the optimal product configurations with regard to core cleaning, 

product serviceability, and environmental impact, a multi-criteria decision technique is employed 

to determine the sustainability measures of the product configurations.                        

4.2         Literature review                           

4.2.1        Design of PSS-Remanufacturing business model     

 A growing number of OEMs are getting involved in the PSS-remanufacturing business 

(Guidat et al., 2014). The concept depicts a scenario in which the OEM takes the responsibility of 

product ownership while offering the product functions to the customer for payment, while the 

OEMs remanufacture the product at the end of use (EOU).  Remanufacturing refers to the process 

that restores used products to useful life (Östlin et al., 2009). Remanufacturing saves energy 

equivalent to over 10.74 million barrel of crude oil and mitigates extraction of virgin resources 

(Giutini & Gaudette, 2003), prevents annual production of over 28 million tons of CO2 globally 

and lower landfills (Charter & Gray, 2008). Therefore, improved remanufacturing enables 

significant cost savings and environmental preservation. Core cleaning is an essential process that 

enhances the quality of remanufacturing (Subramoniam et al., 2008). Gavidel & Rickli (2017) 

discuss the importance of core quality for efficient remanufacturing. However, remanufacturing 

is significantly impeded by the quality and quantity of the core as well as the timing of core 

recovery (Gavidel & Rickli, 2015).  
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The PSS is a business method that is premised on the offering of product functions rather 

than product ownership, thereby satisfying customers’ needs with fewer products (Annarelli et 

al., 2016). As a result, the PSS is characterized by higher product usage than in traditional business 

offering. In order to meet the needs of multiple users, product serviceability becomes an 

essential criterion in PSS (Song & Sakao, 2017; Sundin et al., 2009). Since the product ownership 

lies with the OEM, the PSS enables the OEM to have some control over the quantity, recovery 

time, and quality level of used product. Consequently, the remanufacturing facilities can be 

designed efficiently, thereby making PSS-remanufacturing business a more sustainable venture. 

The earliest studies to incorporate PSS and remanufacturing are contained in Sundin & Lindahl 

(2008) and Sundin et al. (2009). These studies basically provide theoretical framework. A 

thorough review by Hatcher et al. (2011) highlight the enormous potential befits that are 

embedded in this business idea. Sundin et al. (2008) and Qu et al. (2016) corroborate other 

researchers that the performance of both PSS and remanufacturing are significantly influenced 

by PD decision.           

 It is important to estimate the imprecise data that pertain to the product during its 

lifecycle so as to develop an efficient optimization model at the early phase of PD. Fuzzy system 

has been widely used in PD to obtain such vague data. Nepal et al. (2008) apply fuzzy system to 

obtain vague data in product decomposition and developed an optimization model to identify 

optimal product architecture than improves manufacturability. Fadeyi et al. (2017) apply fuzzy 

system to estimate the compatibility level of module pair with regard to core cleaning and 

product serviceability in order to develop PD optimization model. Some application of fuzzy 

system in product development are contained in Aguwa et al. (2012) and Nepal et al. (2007). 



www.manaraa.com

57 
 

 
 

Furthermore, PD often involves satisfying multiple and conflicting objectives. Multi-attribute 

utility theory (MAUT) has been widely applied in PD research. MAUT is an analytical decision 

making technique for analyzing multiple alternatives. MAUT converts different units of multiple 

options to utility values that rank between 0 and 1. The generic unit-less scale enables 

alternatives to be comparatively assessed. Salari & Bhuiyan (2018) employ MAUT to handle the 

trade-offs in a new product development model. Chelst & Canbolat (2011) describe the 

application of MAUT within the environment of Logical Decisions’ package.                    

4.2.2        Influence of modular design on product lifecycle      

 A large volume of research agrees that PD decisions significantly influence all the phases 

of the product life lifecycle and that product modularity is an effective PD strategy. It is largely 

reported that modular design impacts all phases of the product lifecycle. At the PD phase, 

product modularity simplifies product architecting and enhance assembly processes (Yan & Feng, 

2014). Nepal et al. (2005) demonstrate that modular design enhances manufacturing agility with 

a development of a fuzzy-based modular product that enables the OEM to sustain market share. 

Also, it is shown that modular design enhances the use phase of the product. Nepal et al. (2007) 

develop a modular product that improves product serviceability at a reduced cost. Aguwa et al. 

(2010) develop a modular architecture to improve the functional performance of a medical 

device in order to boost the quality of patient care. PSS is characterized by high product usage, 

hence product serviceability is critical to the performance of a product in the functional sale 

(Sundin & Lindahl, 2008). Furthermore, modular design substantially improves disassembly, 

product recovery, ease of reuse, to enhance product EOL management such as remanufacturing.  

Sundin & Lindahl (2008) report that enhanced product disassembly as a result of modular 
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architecture facilitates core cleaning for remanufacturing purpose.  Core cleaning is an essential 

criterion in remanufacturing processes. Qu et al. (2016) affirm that modular design is an efficient 

PD approach for both PSS and remanufacturing. Therefore, an efficient PSS-remanufacturing 

business could be realized through product modularity. The proponents of PSS-remanufacturing 

opine that it is a sustainable business strategy.      

 However, the environmental impact due to modular design has not been well addressed. 

Meanwhile, Kremer et al. (2016) report that the influence of product architecture on 

sustainability measure (e.g. carbon footprint) has not been addressed. The study calls for further 

studies to investigate the impact of modular architecture on environmental sustainability. 

Previously, Chung et al. (2011) obtain data that pertain to product assembly (for manufacturing), 

product use, and product disassembly (for EOL options) to develop a modular design that 

enhances product lifecycle. However, the study ignores the environmental impacts that are 

associated with the production of the modules from raw materials. In another study, Li et al. 

(2008) provide a modular design by considering impacts that are associated with the material 

composition of the parts of the product, as well as the product usage and end-of-life phase.  

However, only the environmental impact that relates to the materials (such as toxicity) was 

considered in the architectural design, leaving out other important factors that are connected 

with the conversion processes of the materials (e.g. energy and transportation). In a nutshell, the 

environmental impacts which are factored into the modular design in these studies are under 

quantified. In order to determine the environmental impact of the modular product, it is 

necessary to consider all the processes that are involved in the production of the modules 

including the materials, the energy inputs, and the associated transportation.  
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A comprehensive Impact assessment such as in lifecycle assessment (LCA) provides more 

encompassing environmental impact assessment. The LCA permits the environmental impact 

assessment of the available parts (or module variants) which enables the modular architecture 

that minimizes environmental impacts to be developed at the early stage of PD.       

4.2.3    Design for sustainable product development     

 It is acknowledged in the PD research domain that product development plays a 

fundamental role in the environmental impacts of a product during its life cycle. Hallstedt (2017) 

and (Ijomah et al. (2007) emphasize that PD is the strongest determinant of the environmental 

impact of a product through its lifecycle. PD researchers note that PD flaws are extremely difficult 

to remedy. According to Ardente & Mathieux (2014) and Luttropp & Lagerstedt (2006), products 

have significant sustainability impact all through their lifecycle but very little could be done when 

the product has hit the market. Therefore, it is important to incorporate environmental 

considerations into the early stage of PD. To address this challenge, design for environment (DfE) 

was recently added to the design for X (DfX) concepts. Substantial studies have been done to 

incorporate lifecycle issues into the early phase of PD through DfX concepts. Few examples 

include design for remanufacturing, design for disassembly, design for cost, etc. Arnette et al. 

(2014) report that there are over 75 different DfX concepts in literature and provide a 

comprehensive review on 14. For tractability purposes, Jawahir et al. (2007) and later Arnette et 

al. (2014) attempt to condense the DfX concepts into one framework towards design for 

sustainability (DfS) . However, a wide gap still exists among the DfX concepts as a clear-cut 

integration is completely missing Kremer et al. (2016). In many instances, studies in PD that relate 

to only environmental implications have been loosely labeled green design, ecological design, 
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environmental design, lifecycle design, or sustainable design. For example, in the research to 

integrate sustainability into early PD, Devanathan et al. (2010) considered only the 

environmental impacts.  Consequently, Kremer et al. (2016) conclude that a design for 

sustainability must include other aspects of sustainability (such as cost) with the environmental 

consequences. Referring to the model in Fadeyi et al. (2017), core cleaning and product 

serviceability are considered. The cost saving that relates to improved core cleaning and product 

serviceability was discussed earlier.  Therefore the integration of the environmental 

considerations with the core cleaning and product serviceability optimization enables a more 

sustainable modular product architecture to be determined.                                             

4.2.4          Measurement of product lifecycle environmental impacts    

 The product lifecycle is generally subdivided into four phases, namely, raw material 

extraction, production, use, and End-of-life (Witik et al., 2013). Some methodologies that are 

based on impact categories have been used to measure the impact of product lifecycle on the 

environment. Carbon footprint has been grossly employed to evaluate the environmental 

impacts of products and as the basis for decision making. Recently, Rezaee et al. (2017) employ 

the carbon price that is associated with the carbon footprint to design a sustainable product 

supply chain network. However, carbon footprint is focused on a single environmental impact 

category-the CO2 emission. Every phase of a product lifecycle is characterized with consumption 

of resources and emission release, which ultimately result into some classification of 

environment impacts such as climate change, ozone depletion, acidification, eutrophication, 

toxicological stress on human health and ecosystem, and depletion of resources (Witik et al., 

2013). The impact categories are integrated to develop the Lifecycle assessment (LCA) 
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methodology.           

 Currently, LCA is the most widely applied procedure to estimate the environmental 

impacts that are related to goods and services (Chaabane, Ramudhin, & Paquet, 2012; Haapala 

et al., 2013).  Recently, some researchers attempt to critique the LCA with an argument that 

quantifying the sustainability or unsustainability of materials, products, and processes in 

numerical terms is defective and suggest qualitative methods of assessment.  Schöggl etal. (2017) 

propose a qualitative method for sustainability evaluation and suggest that ‘dialogs’ among 

relevant PD departments through a tool called “Checklist for Sustainable Product Development 

(CSPD)” should inform sustainable product design. Also, Hallstedt (2017) develops a qualitative-

based sustainability criteria index (SCI) that is obtained through brainstorming among relevant 

groups for PD. However, a fundamental flaw of a sustainable product design methodology that 

lacks quantifiable variables is that the comparison among multiple product alternatives is 

difficult. Despite its limitation, LCA is a globally accepted standardized method and the most 

widely applied approach in research (Witik et al., 2013). Recently, Schöggl et al. (2017) employ 

LCA in the development of a computer-aided sustainable product.  Similarly, Hallstedt & Isaksson 

(2017) apply LCA for materials assessment in order to realize a sustainable product development 

scenario.           

 Environmental impact categories as identified previously are integrated differently to 

build a lifecycle impact assessment (LCIA) method. Some of the notable LCIA methodologies that 

are employed in LCA include eco-indicator 99, Recipe Endpoint, and CML.  There are popular LCA 

packages (e.g. OpenLCA, SimaPro and GaBi) that either contain inbuilt LCIA methods or permit 

such to be imported. Eco-indicator 99 LCIA method is particularly important for product 
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development. According to Goedkoop & Spriensma (2000), “the use of Eco-indicators has just 

one purpose, namely making products more environmentally sound”.  Detailed description of the 

eco-indicator 99 is contained in Goedkoop & Spriensma (2000). As described in ISO (2006), the 

procedure for a LCA involves four basic stages: goal and scope definition; inventory analysis; 

lifecycle impact assessment; and interpretation. Other stages of the procedure are meant for 

decision purposes. Detailed discussion on LCA could be find in Danilecki et al. (2017).                     

4.2.5          The missing gap addressed        

 As discussed previously, for a PSS-Reman business to be considered sustainable, it is 

essential to consider the environmental impacts that relate to the production of the parts 

(modules) that constitute the product that is offered in PSS. Furthermore, a sustainable business 

scenario should integrate other aspects of sustainability with the environmental consequences. 

A sustainable PSS-Reman product offering of this description is missing. In order to fill this gap, 

this research employs LCA to determine the environmental indicators of the module variants in 

order to develop an environmentally sustainable modular product. In addition, the study 

highlights the cost benefits that relate to improved core-cleaning and product serviceability and 

modified an optimization model to determine the modular architectures that enhance core 

cleaning and product serviceability. The optimal product architecture with regard to core 

cleaning, product serviceability, and environmental impact are jointly evaluated by a multi-

criteria decision-making technique in order to determine the appropriate modular architectures 

that ensure sustainable PSS-Reman business offering.                                      

4.3       Methodology          

 This study is premised on a PSS-Reman Business setting. The OEM offers the product to 
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the customer through functional sales. It is the responsibility of the OEM that the product is 

available for customer’s use. The product is retrieved at the end-of-use (EOU) for Reman. The 

overall goal of the OEM is to install a sustainable PSS-Reman business through a modular product. 

Several module variants are available to the OEM through multiple suppliers. This section is 

divided into two parts. The first part relates to the determination of product architectures that 

enhance core-cleaning and product serviceability through an optimization model. The second 

section discusses the environmental impact assessment of the module variants in order to 

determine the modular architecture with minimal environmental impact.                    

4.3.1     Framework for development of modular architecture    

 The OEM needs to develop a modular product for the PSS-Reman business. The product consists 

of m modules. There are module sets  i & j in m. Different variants k of module i and l variants of module 

j are available from multiple suppliers. The k − l module pair compatibility is evaluated using fuzzy system 

with respect to core-cleaning and product serviceability. The product is developed by clustering into it the 

k − l  pairs that optimize the required objectives. In the situation where m is not even, a dummy module 

set is created in order to ensure complete module pairing. Pairwise assessment of modules permits 

thorough evaluations with respect to the desired objectives. The problem becomes complex as the 

number of m increases. The model is structured as a tree for efficient modeling and formulated as a binary 

integer programing (BIP) problem. The modeling framework is provided in prior study (Fadeyi et al., 2017). 

In the optimization model, the k − l module pair is the decision variable. The resulting non-linear 

optimization model is linearized to guarantee optimality of solution. The k − l module pair compatibility 

is evaluated using fuzzy system with respect to core-cleaning and product serviceability. The output from 

the fuzzy system provides the compatibility index of the k − l  module pair with regard to the criterion of 

interest. The notations in the model are descried below.  
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Notations and descriptions 

M Sample space of available module  

m Number of modules in the product drawn from M ; m ϵ M 

i, j  Sets of modules available in  ; i, j ϵ m, i ≠  j  

k Variant of module set i ; k ϵ i 

l Variant of module set j ; l ϵ j 

n The number of items in a set 

β Branch in the tree 

w  Number of branches β.   

t Number of paths in a tree branch  β 

α Path in a branch of the tree 

γ Node along path α in a branch β representing modular pairs of same i & j.   

q Number of nodes on path α 

y Indicator variable to distinguish each configuration of on a path α in a branch β 

λ Number of Indicator variables at node γ   

Z Binary variable to linearize nonlinear constraints  

Xikjl  Decision variable representing k − l module pair; k ϵ i, l ϵ j 

Iikjl  Compatibility index of k − l pair; k ϵ i, l ϵ j 

SI Serviceability index 

KI Core-cleaning index 

4.3.1.1   Development of optimization model     

 Objective functions          
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 From module sets  i & j, k − l pair is either jointly clustered into the product or not. 

Modular pair compatibility index is estimated by fuzzy system with regard to product 

serviceability and core cleaning.  

1.   Max S(X) = ∑∑∑SIikjlXikjl

nj

l=1

ni

k=1

m

i,j=1

                                                                    (1) 

2.   Max K(X) = ∑∑∑KIikjlXikjl

nj

l=1

ni

k=1

m

i,j=1

                                                               (2) 

Constraints. 

3. A variant k from module set i can be jointly clustered with at most a variant l of 

module set j   

∑∑Xikjl

nj

l=1

ni

k=1

≤ 1                                                     ∀ i, j ∈ M,     i ≠ j           (3) 

4. From module sets i & j, k − l pairs along a path α are jointly clustered to produce a 

unique modular product architecture. Also, in a branch β, the number of product 

configurations that can be produced is no more than the total available configurations 

in the branch  

 ∑(∑∑Xikjl

nj

l=1

ni

k=1

)

q

γ=1

 yβ
α   ≤   ∑ yβ

α

t

α=1

                                         ∀ β                    (4) 

5. The k − l pair from module sets i & j can either be jointly clustered or not.   

Xikjl =  {
1 
0 
                                                                                                            (5) 
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6. Distinguish every product configuration along path α in branch β.  

 yβ
α =  {

1   if a configuration is chosen from α
0                                                        otherwise

                                                    (6) 

7. Linearize the of non-linear constraints in (4) 

Zγ = (∑∑Xikjl

nj

l=1

ni

k=1

)yβ
α                                                                                                       (7) 

Zγ ≤∑∑Xikjl

nj

l=1

ni

k=1

                                                                                                                (8) 

             Zγ ≤ yβ
α                                                                                                   ∀y                          (9) 

Zγ ≥∑∑Xikjl

nj

l=1

ni

k=1

+∑yβ
α

ny

λ=1

 − ny                                                        ∀β                            (10) 

          Zγ, Xikjl , yβ
α ϵ {0,1}                                                                                                  (11 

8. For every branch β to make product configurations in  (4), linearize the non-linear 

constraints in (4)  with Zγ and add (8 − 11) to  (4) 

∑Zγ

q

γ=1

≤ ∑yβ
α

t

α=1

                                                                                ∀ β                  (12) 

9. At least one product configuration should be developed  

∑∑yβ
α

t

α=1

w

β=1

      ≥ 1                                                                                                          (13) 
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10. For a variant k that cannot be remanufactured, the compatibility index of the k − l  

pair should be penalized, 0 for max objective, large number L for min objective. Use 

same approach for module variants that are incompatible.  

 Iikjl = {
0 for max objective
L for min objective

 ,     i, j ∈ M, i ≠ j, k, l ∋ Xikjl                        (14) 

11. For a variant k that is desirable in the product, pair k with a pre-determined variant 

l of module j. For max objective, assign a large value L to their compatibility index, 

and 0 for min objective 

 Iikjl = {
L for max objective
0 for min objective

 ,     i, j ∈ M, i ≠ j, k, l ∈  Xikjl                          (15) 

4.3.1.2     Estimation of modular pair indices      

 The compatibility of the k − l modular pair with respect to product serviceability and 

core-cleaning are estimated through Fuzzy system (Fadeyi et al., 2017).  The compatibility of a 

modular pair with respect to product serviceability was measured by the degree of accessibility 

of the module pairs, the services resources that are jointly shared and their degree of relationship 

in service requirement (service frequency). The fussy system converts these inputs to an index 

that is a measure of serviceability of the pair. On a similar note, the compatibility of a core-

cleaning of k − l modular pair is measured by the similarity of materials composition of the pair, 

the similarity in the dirt relating to the pair, and the level of cleaning resources that are jointly 

shared by the two modules. Similar, the fuzzy system converts these input into module pair core-

cleaning index.                                           

4.3.2       Modular product design for minimal environmental impact    

 This section describes the development of modular configuration(s) to ensure 
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environmental sustainability. In a scenario related to section 3.1, there are m modules in the 

product. There are k variants available from different suppliers for every module i in m. The goal 

of the OEM is to perform LCA of all k variants of module set i in order to determine the variant 

with the minimal environmental impact.                                 

4.3.2.1         Estimation of ecological indicators of module variants     

 The evaluation of the environmental impact of the module variants is performed 

according to the procedure for LCA as described in ISO (2006).  Three out of four procedures that 

are mentioned in section 2.4 are discussed here. The interpretation is included in section 4.2. 

A. Goal and scope definition: The functional unit is a module variant. The scope includes the 

extraction of the materials, the production of the module variant, the transportations 

involved in producing the variant, and the transportation involved in product distribution. 

The retirement of the product is not considered.  

B. Inventory analysis: 

1. The material compositions of the functional unit (module variant). For example, the 

module variant that consists mainly of stainless steel and it is made in Texas, USA. From 

the OpenLCA database, select “steel, billets, at plant-US” and “chromium, 25.5% in 

chromite, 11.6 in crude ore, in ground”. 

2. The weight of the module: Energy consumption is dependent of the weight of the 

material. The total embodied energy of the functional unit (weight * embodied 

energy/kg) included in the product system of the LCA. The kilogram (kg) is commonly used 

in the LCA assessment 



www.manaraa.com

69 
 

 
 

3. The energy required for producing the part from raw materials. The dominant energy 

where the part was produced is imported from the LCA database. For example, a module 

variant that consists of stainless steel and is produced in Texas US, import “Electricity at 

Grid, Texas US, 2000-US” from the OpenLCA database. Energy unit, MJ/kg is commonly 

used.  

4. Production-based transportation: Huge amount of environmental impact is attributed to 

transportation in manufacturing. An estimate of the transportation distance (based on 

the supplier’s location) that are associated with the production of a module variant is 

made. For example, a module variant that is produced in Alaska, United States and 

shipped to an OEM in Detroit, United States, import “Transport, Ocean freighter, residual 

fuel oil powered-US” from the OpenLCA database.  

5. Product distribution based transportation: The study is focused on a product that is 

offered in PSS, therefore an assumption of a market geographical location is made. A 

generic transportation distance is assumed to assess all the module variants because the 

irrespective of the location of the product, all the modules that are clustered therein. For 

example, a product that is manufactured in the United States and the United States as 

the target market, an average distance of 5000 miles (8050km) is assumed. In the LCA, 

import “transport, combination truck, average fuel mix-US“. The LCA provides the 

ecological impact that is due to the transportation energy.  

Howarth et al. (2014) and Abbes et al. (2014) provide the embodied energy of a unit (kg) 

of metals and composites. Some of these are contained in table 4.1. The Embodied energy of a 

part is the energy consumed in all the processes to make the part, from the extraction of the raw 
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materials, through transportation, manufacture, installation, disassembly, and decomposition 

(Dixit et al., 2010). The average values of the embodied energy of the materials are used for the 

LCIA in the OpenLCA. 

Table 4.1: Energy contents of materials 

 

C. Method of Lifecycle impact assessment: A significant benefit of the eco-indicator 99 is 

that it contains an inbuilt mechanism that converts several environmental impact values 

into a single indicator for each of the three classification- Human health, Ecosystem 

quality, and resources (fossil fuels). This single indicator is significantly useful for 

evaluating multiple module variants which enable the development of environmentally 

sustainable modular product architecture. The built-in effects in ecological class 

(ecosystem quality) include ecotoxicity which relates to biological, chemical and physical 

pressures on the ecosystem; acidification which relates to the potential impact of CO2 

release; eutrophication that refers to the release of harmful substances that affect plant 

growth, and land use.  The Ecosystem quality impact assessment category of the eco-
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indicator 99 is considered appropriate for the measure of the environmental impact of 

module variants in this study. This LCIA is accessed in the OpenLCA 14.  

4.3.2.2  Impact assessment of module variants in OpenLCA    

 To provide a brief description of the application of the OpenLCA. In the OpenLCA, a 

‘process’ is created for every module set. The ‘flows’ or parameters such as weight, energy, and 

transportation that are associated with module variants are included in the ‘process’ to create 

the ‘product system’. Then, a ‘project’, is created and the ‘product system’ is imported for each 

variant of the particular module into the ‘project’. The “Eco-indicator 99 (H)” is chosen as the 

lifecycle impact assessment (LCIA) method and “Ecosystem-total” as the impact category. Several 

environmental impact results are generated which may be explored for more elaborate PD. For 

the modular product development purpose, a summarized result that yields a single value as the 

overall estimate of the environmental impacts is considered appropriate. As an example, the 

analysis result of a module set that consists 4 variants is depicted in figure 4.1. The indicator of 

each variant shows its estimated impact on the ecosystem with a larger number indicating higher 

environmental impact. F1 with 173.95 PDF ∗ m2 ∗ yr (potentially disappeared fraction ∗ m2 ∗ yr) 

is the module variant of choice for a sustainable modular product development. 
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Figure 4.1: Eco-indicators of variants of a functional unit using ecosystem LCIA.                                      

4.4        Case study          

 An auto industry in Michigan, United States provides a data that relate to the modules of 

a subassembly that consists six modules. During the PD process, there are four available variants 

for each module. For the ease of identification, the modules are referred to A, B, C, D, E, and F. 

The variants of module set A are referred to as   A1, A2, A3, A4. Other module sets are categorized 

on a similar vein. From this scenario, there are a total of 61440 potential product configurations. 

4.4.1       Modular design for enhanced core cleaning and serviceability         

 The k − l modular pair compatibility with regard to product serviceability and core-

cleaning are provided by the fuzzy system. The results are depicted in Tables 2.3 and 2.4. 
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Table 2.3: Modular pair serviceability indices 

 

Table 2.4: Modular pair core-cleaning indices 
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The mathematical model was implemented in Gurobi-python interface. The optimal 

product architectures are depicted in Table 2.5. 

Table 2.5: Optimal product configuration 

 

4.4.2      Determination of eco-friendly modular architecture    

 The primary materials of the module variants and their weights are provided, as well as 

the suppliers’ locations. These are contained in table 5. The embodied energy is the product of 

the average embodied energy/kg and the weight (kg) of the module variant. The embodied 

energies of materials are contained in Table 4.1. “Trans1” is the estimated distance from the 

source of the module variant to the manufacturing facilities of the OEM. As described in section 

4.3.2.1, the most likely means of transportation (in km) is imported from the OpenLCA database 

into the “Product System” for every variant. Similarly, the type of the dominant energy at the 

module supplier’s location is imported into every “Product system”. It is assumed that the 

product is offered for use within the United States. A transportation distance (Trans2) of 5000 

miles (8050 km) is assumed for product distribution within the United States. This value applies 
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to all the module variants because they are contained in the product. A generic transportation 

flow “transport, combination truck, average fuel mix-US “is assigned to all the module variants.  

Table 4.2: Parameters of module variants for LCA 

 

Following the description in section 4.3.2.2, the “Eco-indicator 99 (H) is chosen as the 

Lifecycle impact assessment (LCIA) method and “Ecosystem-total” as the impact category. A 

“project” is created for every module.  Four “product systems” and created within the “project, 

and the parameters of each variant are included in its “product system”. Every “product system” 

relates to a module variant. The summary of the LCA results containing the ecological indicators 

(EI) is contained in Table 6. 

 



www.manaraa.com

76 
 

 
 

Table 4.3: Eco-indicators of module variants using Ecosystem LCIA 

 

From the LCA result, the module variants that should be clustered into the product to 

realize minimal environmental impacts include:  A3, B2, C3, D3, E4, F1                    

4.4.3     Multi-criteria decision analysis and results      

 Having obtained the optimal modular configurations with regard to core cleaning, 

product serviceability, and environmental sustainability, it is essential to evaluate the relative 

sustainability of the architectures. The overall indices of the optimal configurations are obtained 

as contained in Table 7. MAUT is applied through Logical Decision for Windows (LDW).  

Table 4.4: Indices of optimal product configurations 
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The sustainability ranking of the product configurations is depicted in Figure 4.2. Product 

alternative 4 is ranked 1st in overall utility (sustainability score). 

 

Figure 4.2: Evaluation of the product alternatives on a common scale   

 It could be seen that although product alternative 1 is the most environmentally 

sustainable architecture, however, it has the lowest sustainability score. As much as the OEM is 

enthused to curtain the harm of its business activities on the environment, its economic viability 

through enhanced core cleaning and product serviceability cannot be sacrificed. Therefore, 

product alternative 1 is not a suitable architecture for the OEM. Figure 4.3 provides the utility 

values of all product alternatives with regards to environmental impact assessment. 

 

Figure 4.3: Environmental impact measure of product alternatives  



www.manaraa.com

78 
 

 
 

From the analyses, alternatives 4 and 8 that are top ranked in overall sustainability are 

ranked 4th and 7th with regard to environmental impact. Similarly, alternative 11 has a low 

environmental impact but it is poorly ranked in overall utility, implying inefficient core-cleaning 

and serviceability. Alternative 6 is not an option whatsoever in relation to environmental 

sustainability. Another observation shows that alternative 5 that ranks high in overall 

sustainability ranks low in environmental sustainability. The OEM with a commitment to 

environmental preservation should not consider this architecture. Product configurations 4, 3, 9, 

and 8 have fairly low environmental impacts and are ranked among the first 5 on the overall 

utility scale. Further assessment of these alternatives is shown figure 4.4.  

 

Figure 4.4: Sensitivity of product configurations to Eco-indicator    

 At about more than 50% weight assigned to eco-impact, all the alternatives appear to be 

sensitive, with the exception of alternatives 1 & 6. The second vertical line represents 

environmental impact measure. The line is positioned at 33.33% of the X-axis because the three 

measures are equally weighted. Alternative 4 appears to be a robust solution relative to 

environmental impact until a weight above 70% is assigned to eco-impact (less than 30% for both 

core-cleaning and serviceability objectives) before it is displaced by 3 product alternatives. 
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Product alternative 1 can only be the ideal candidate when a weight of more than 70% is assigned 

to environmental impact measure. As mentioned earlier, this is not a realistic business decision 

for the OEM. Again alternative 4 ranks higher than configurations 3, 9 and 8. However, figure 4.5 

shows that alternatives 8 and 9 are the architectures with optimal core-cleaning, thereby 

improving remanufacturing. 

 

Figure 4.5: Sensitivity of product configurations to core-cleaning objective  

 Therefore, in order make sustainable product architecture decisions among alternatives 

4, 8, and 9, it behooves the OEM to reach some compromise between its commitment to 

environmental sustainability and business growth. With these analyses, the OEM is better 

equipped to realize a more sustainable PSS-Remanufacturing business.                                     

4.5         Conclusion          

 The PSS-Remanufacturing business idea is conceived to be a sustainable venture. 

However, this claim could be faulty unless adequate consideration is given to the environmental 

implications that are involved in the production of the parts (modules) through which the product 

is built.  In addition, a sustainable design needs to integrate the environmental consequences 

with the other aspect of sustainability. With the relevant data of a 6-module product, the study 
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applies LCA to obtain the ecological indicators of the module variants and determines the 

modular architecture with minimal environmental impacts. Furthermore, the study obtains the 

optimal product configurations that enhance core cleaning and product serviceability through an 

optimization model. In addition, MAUT was applied to assess the overall sustainability of the 

product configurations. The results show that the configuration with the least environmental 

impact is not a desirable architecture because of its low performance with regard to 

remanufacturing and product servicing. Further trade-off analyses reveal that three 

configurations are relatively more viable in relation to environmental impact, core-cleaning, and 

product serviceability. The study provides analytical insight to the OEM in order to make 

informed decisions on product architectures that enable a sustainable PSS-Remanufacturing 

business.          

 Although, equal global weights are assigned to the objectives for proof of concept, several 

sensitivity analyses could be provided by adjusting the weights of the objectives as desired by the 

OEM for practical application. Therefore, it is essential to collaborate with the OEM so that the 

actual preference of the objectives are appropriately apportioned as their weights. 

Consequently, the real life scenarios are reflected by the resulting sensitivity analyses. 

 Finally, the OEM could engage the robustness of a product configuration as a tool to 

satisfy regulatory measures, bolster its public image, and gain competitive advantage. For 

example, product configuration 4 is a robust solution when any weight between 0 and 70% is 

assigned to eco-impact, and other weights of other objectives remain unaltered. Given that this 

is choice product architecture, the OEM may claim that its business is 70% environmentally 

sustainable.   
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                    CHAPTER 5: CONCLUSION AND FUTURE STUDIES                      

5.1        Conclusion                             

 This study offers considerable contributions to the emerging PSS-remanufacturing 

business enterprise. Specifically, a research lacuna is filled by providing an analytical integration 

of PSS and remanufacturing at the early phase of PD with the development of a unique 

optimization model for identifying viable modular product architecture. In addition, pairwise 

assessment of modules is introduced into modular PD. This PD approach permits a thorough 

evaluation of modules with respect to all the criteria that are essential for product lifecycle 

optimal performance.  Furthermore, the cost implications of the product lifecycle are considered 

at the PD phase to ensure the economic viability of the PSS-Remanufacturing product offering. 

Also, the study employs LCA to estimate the ecological effects of module variants and quantifies 

the environmental consequences of modular architecture in order to realize a sustainable 

business venture. In addition, the research provides comparative assessments of optimal product 

configurations so as to guide modular product architectures’ decisions. Finally, the study 

highlights the importance of robust solutions in emphasizing the commitment of the OEM to 

sustainability.     

5.2 Future studies 

With the increasing growth in PSS-Remanufacturing business, the competitiveness among 

the manufacturers in the similar business sphere is expected to rise. Therefore, it becomes 

expedient to factors other variables such as the voice of customers into product architecture 

decision making. Future research in this regard enables the realization of competitive 

advantages. In addition, the remanufacturing thinking is that product’s parts are reusable a 
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number of cycles. However, customers’ requirements are increasingly changing, thereby 

increasing product’s obsolescence. It is needful to consider a family of product scenario in which 

recovered cores are reusable in another product version. This is a worthwhile extension of this 

research. Furthermore, an exhaustive LCA of a product over the four phase of its lifecycle is a 

complex task. At the PD phase, this research considers only the dominant materials in the module 

variants. A comprehensive LCA will require every material input, no matter how little, to be 

included in the LCA. An extension of this research is to perform a more detailed LCA for an 

improved evaluation of environmental impact of PD. In addition, this research assumes equal 

weight for ecological impacts as other measures of sustainability. In reality, a manufacturer 

defines its specific obligation to environmental sustainability, different from others. Through 

more collaborative research with the OEM, the firm’s level of commitment to the environment 

would be appropriately integrated into PD decisions. 
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ABSTRACT 

MODULAR PRODUCT ARCHITECTURE’S DECISIONS SUPPORT FOR 
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Remanufacturing is identified as the most viable product end-of-life (EOL) management 

strategy. However, about 80% of manufactured products currently end up as wastes. Besides 

other benefits, the product service system (PSS) could curtail the main bottlenecks to 

remanufacturing namely quantity, quality, recovery time of used product, and negative 

perception of remanufactured products. Therefore, the integration of PSS and remanufacturing 

has been increasingly recommended as an enhanced product offering. However, an integration 

that is informed by mathematical analysis is missing.  Meanwhile, the variables that bolster the 

performance of PSS and remanufacturing are substantially influenced by product development 

(PD) decisions. Among the PD strategies, modular architecture is a technique that significantly 

enhances product lifecycle management. Consequently, modular design is a suitable PD 

approach for an enhanced PSS-remanufacturing enterprise. Furthermore, it is argued that the 

PSS-remanufacturing initiative is poised to be a sustainable venture due to the sustainability 

philosophy of PSS. However, the acclaimed sustainability of PSS is flawed if a high environmental 
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impact is associated with the production of the parts that constitute the product which is offered 

in PSS. Therefore, it is essential to consider the environmental implications of the production of 

the parts that are contained in the product architecture during PD. This research identifies that 

cost, core-cleaning, and product serviceability are critical variables for the success of 

remanufacturing and PSS. The research employs pairwise assessment methodology to evaluate 

the compatibility of module pairs comprehensively, and obtains the modular pair compatibility 

indices via fuzzy system. Similarly, cost data are obtained. The study develops an optimization 

model that determines viable modular configuration(s) from among several alternatives in order 

to realize an enhanced PSS-remanufacturing business. Furthermore, the research performs 

lifecycle assessment (LCA) of module variants and determine the modular architecture with 

minimal environmental Impact. Having obtained the optimal architectures with regard to cost, 

core cleaning, product serviceability and environmental impacts, multi-attribute utility theory 

(MAUT) is engaged to collectively assess the degree of sustainability of the product architectures. 

The study offers analytical-based guidance to the original equipment manufacturers (OEMs) in 

making product architecture decisions in order to realize the sustainable PSS-remanufacturing 

enterprise. 
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